Расчет теплоизоляции трубопровода

Расчет теплоизоляции трубопровода

СВОД ПРАВИЛ ПО ПРОЕКТИРОВАНИЮ И СТРОИТЕЛЬСТВУ

ПРОЕКТИРОВАНИЕ ТЕПЛОВОЙ ИЗОЛЯЦИИ ОБОРУДОВАНИЯ И ТРУБОПРОВОДОВ

Designing of thermal insulation of equipment and pipe lines

ОКС 91.140.10
ОКСТУ 49 2000

1 РАЗРАБОТАН ГУП НИИмосстрой при участии Государственного предприятия – Центр методологии нормирования и стандартизации в строительстве (ГП ЦНС) и группы специалистов

2 ОДОБРЕН И РЕКОМЕНДОВАН к применению в качестве нормативного документа Системы нормативных документов в строительстве постановлением Госстроя России от 16.08.2000 г. N 81

ОДОБРЕН для применения в странах СНГ протоколом N 16 от 02.12.99 г. Межгосударственной научно-технической комиссии по стандартизации, техническому нормированию и сертификации в строительстве (МНТКС)

ВВЕДЕНИЕ

Настоящий Свод правил содержит указания по проектированию тепловой изоляции наружной поверхности оборудования и трубопроводов, выполнение которых обеспечит соблюдение обязательных требований к теплозащите тепловых сетей, технологических трубопроводов при строительстве, капитальном ремонте и эксплуатации теплоизоляционной конструкции, установленных действующим СНиП 2.04.14-88* “Тепловая изоляция оборудования трубопроводов”.

Решение вопроса о применении данного документа при проектировании и строительстве конкретных зданий и сооружений относится к компетенции проектной или строительной организации. В случае если принято решение о применении настоящего документа, все установленные в нем правила являются обязательными. Частичное использование требований и правил, приведенных в настоящем документе, не допускается.

В данный Свод правил включены методы расчета тепловой изоляции оборудования, технологических трубопроводов и трубопроводов надземных и подземных тепловых сетей, приведены таблицы толщины изоляции, составленные с ориентацией на применение высокоэффективных утеплителей на основе новых норм плотности теплового потока через изолированную поверхность оборудования и трубопроводов, введенных постановлением Госстроя России от 31.12.97 г. N 18-80.

В разработке Свода правил принимали участие: В.Г.Петров-Денисов (руководитель работы), Б.М.Шойхет, Л.В.Ставрицкая, Ю.В.Матвеев (АО “Теплопроект”), А.В.Сладков (НИИмосстрой), В.А.Глухарев (Госстрой России), Л.С.Васильева (ГП ЦНС).

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий Свод правил следует применять при проектировании и монтаже тепловой изоляции наружной поверхности оборудования и трубопроводов с температурой содержащихся в них веществ от 50 до 600 °С и расположенных в зданиях, сооружениях и на открытом воздухе, а также трубопроводов тепловых сетей при надземной прокладке и подземной, выполненной в каналах и бесканально.

2 РАСЧЕТ ТЕПЛОВОЙ ИЗОЛЯЦИИ ПРОМЫШЛЕННОГО ОБОРУДОВАНИЯ, ТРУБОПРОВОДОВ И ТЕПЛОВЫХ СЕТЕЙ

2.1 Основные расчетные зависимости для определения теплозащитных свойств теплоизоляционных конструкций

Для теплового расчета изоляции используются уравнения стационарной теплопередачи через плоские и криволинейные поверхности.

Теплопередача плоской теплоизоляционной конструкции рассчитывается по формулам:

состоящей из слоев изоляции

где – поверхностная плотность теплового потока через плоскую теплоизоляционную конструкцию, Вт/м ;

– температура среды внутри изолируемого оборудования, °С;

– температура окружающей среды, °С;

– термическое сопротивление теплоотдаче на внутренней поверхности стенки изолируемого объекта, м ·°С/Вт;

– то же, на наружной поверхности теплоизоляции, м ·°С/Вт;

– термическое сопротивление кондуктивному переносу теплоты стенки изолируемого объекта, м ·°С/Вт;

– то же, плоского слоя изоляции, м ·°С/Вт;

– полное термическое сопротивление кондуктивному переносу теплоты -слойной плоской изоляции;

– термическое сопротивление -го слоя, м ·°С/Вт;

– линейная плотность теплового потока через цилиндрическую теплоизоляционную конструкцию, Вт/м;

– линейное термическое сопротивление теплоотдаче внутренней стенки изолируемого объекта, м·°С/Вт;

– то же, наружной изоляции м·°С/Вт;

– линейное термическое сопротивление кондуктивному переносу теплоты цилиндрической стенки изолируемого объекта, м·°С/Вт;

– то же, цилиндрического слоя изоляции, м·°С/Вт;

– полное линейное термическое сопротивление кондуктивному переносу теплоты -слойной цилиндрической изоляции;

– линейное термическое сопротивление -го слоя, м·°С/Вт;

В уравнениях (1)-(4) термические сопротивления теплоотдаче и кондуктивному переносу теплоты определяются по формулам:

где , – коэффициенты теплоотдачи внутренней поверхности стенки изолируемого объекта и наружной поверхности изоляции, Вт/(м ·°С);

, , – коэффициенты теплопроводности соответственно материала стенки изолируемого объекта однослойной изоляции, изоляции -го слоя -слойной изоляции, Вт/(м·°С);

, , – толщина соответственно стенки изолируемого объекта, однослойной изоляции -го слоя -слойной изоляции, м;

, – внутренний и наружный диаметры стенки изолируемого объекта, м;

– наружный диаметр изоляции, м;

, – наружный и внутренний диаметры -го слоя -слойной изоляции, м.

Распределение температур в многослойной изоляции рассчитывается по формулам:

температуры на внутренней и наружной поверхностях стенки изолируемого объекта плоской формы:

температура на наружной поверхности первого слоя изоляции, на границе 1-го и 2-го слоев

и далее, начиная со 2-го слоя, на границах ( )-го и -го слоев

температура на наружной поверхности -слоя -слойной стенки:

Для цилиндрических многослойных изоляционных конструкций структура формул для расчета распределения температур имеет вид:

Значения поверхностной и линейной плотности тепловых потоков, входящих в формулы (8)-(15), определяются по (1)-(3), а термические сопротивления – по (5)-(7).

При применении формул (1), (3) необходимо знать коэффициенты теплопроводности изоляционных слоев. Поскольку они зависят от температуры, должны быть известны средние температуры каждого слоя, для определения которых необходимо знать температуры на границах слоев. Для их расчета обычно используется метод последовательных приближений путем проведения нескольких расчетных операций.

На первом этапе, принимая для всех слоев среднюю температуру изоляции, обычно равную полусумме температур внутренней и наружной среды, находят при этой температуре теплопроводность всех теплоизоляционных слоев. Затем, по (1), (3) определяют значения или и по (8)-(11) для плоской и по (12)-(15) цилиндрической стенок рассчитывают температуры на границах слоев и средние температуры каждого слоя.

На втором этапе по найденным на первом этапе средним температурам слоев вновь определяют теплопроводность всех слоев, затем находят плотности потоков тепла и снова рассчитывают послойные температуры, и так далее до требуемой точности расчета. Например, до тех пор, пока послойные температуры на -м и ( )-м шаге будут отличаться не более чем на 5%. Обычно для этой цели необходимо проведение не более 3-4 расчетных операций.

Значительное место в промышленной изоляции занимают теплоизоляционные конструкции подземных сооружений, основной особенностью которых является контакт с массивом окружающего грунта, что в значительной степени усложняет их тепловой расчет по сравнению с конструкциями, контактирующими с атмосферой.

Анализ температурных полей и тепловых потоков в теплоизоляционных конструкциях и в граничащих с ними грунтом позволил заключить, что непосредственно в теплоизоляции с достаточной для инженерных расчетов точностью температурное поле можно считать одномерным. Это позволит определить их термическое сопротивление по формулам (5)-(7).

Плотность теплового потока через теплоизоляционные конструкции, граничащие с грунтом, определяется в этом случае по формулам (1)-(4), в которых термические сопротивления внешней теплоотдаче и заменяются термическим сопротивлением грунта, зависящим от конфигурации изолируемого объекта, расположения его в массиве грунта и теплопроводности последнего.

2.2 Расчет тепловой изоляции трубопроводов и оборудования

Расчет тепловых потерь через изолированную поверхность оборудования и трубопроводов в общем случае следует выполнять для плоских поверхностей по формулам (1), (2), а для криволинейных по формулам (3), (4). Однако анализ особенностей теплообмена в теплоизоляционных конструкциях промышленных объектов позволяет существенно упростить расчетные формулы.

Читайте также:  Погружной насос для дизельного топлива полезен как в быту, так и на производстве

Термическое сопротивление теплоотдаче от внутренней среды к внутренней поверхности стенки изолируемого объекта для жидких и даже газообразных сред по сравнению с термическим сопротивлением кондуктивному переносу теплоты в изоляции составляет весьма незначительную величину и может не учитываться.

Исключение составляет весьма редкий случай, когда внутри объекта находится газовая среда и теплообмен между ней и внутренней поверхностью стенки осуществляется за счет естественной конвекции.

Стенки изолируемого промышленного оборудования и трубопроводов обычно изготовлены из металла, теплопроводность которого в 100 раз и более превышает теплопроводность изоляции, вследствие этого термическим сопротивлением стенки без заметного снижения точности расчета можно пренебречь.

Таким образом, основными расчетными формулами для определения тепловых потерь изолируемого оборудования являются:

для плоских поверхностей и криволинейных диаметром более 2 м

для трубопроводов диаметром менее 2 м

где – коэффициент дополнительных потерь, учитывающий теплопотери через теплопроводные включения в теплоизоляционных конструкциях, обусловленных наличием в них крепежных деталей и опор (таблица 1).

Таблица 1 – Значения коэффициента дополнительных потерь

Способ прокладки трубопроводов

На открытом воздухе, в непроходных каналах, тоннелях и помещениях:

Калькулятор расчета объема изоляции трубопроводов

Предлагаем Вам калькулятор для автоматизированного расчета объема изоляции для магистралей различного назначения – канализации, воздуховодов, отопления или газовых трубопроводов.

Перед тем как воспользоваться калькулятором для расчета объема изоляции трубопроводов, мы настоятельно рекомендуем предварительно ознакомиться с инструкцией.

Онлайн калькулятор для вычисления требуемого объема теплоизоляции для трубопроводов

В условиях нашей страны с ее огромными просторами трубопроводный транспорт является самым эффективным средством транспортировки жидких продуктов. Размеры труб при этом достигают трехметрового диаметра, что позволяет транспортировать по ним большие объемы продуктов. Естественно, что такие магистрали нуждаются в определенной защите от разных факторов:

  • коррозии всех видов;
  • промерзания;
  • физического воздействии природных явлений;
  • от несанкционированного вмешательства посторонних лиц.

Все магистрали, включая газопроводы и нефтепроводы, не говоря уже о водных системах, подлежат изолированию работы в температурном интервале -45 + 60 градусов. Массовое применение такой технологической операции требует тщательного расчета потребности в материалах покрытия поверхности труб, чтобы расходы на нее были оптимальными, подсчет изоляции трубопроводов с использованием различных калькуляторов является необходимостью.

Изоляционные материалы

Гамма средств при устройстве изоляции весьма обширна. Их различие состоит как в способе нанесения на поверхности, так и по толщине слоя термоизоляции. Особенности нанесения каждого вида учтены калькуляторами для подсчета изоляции трубопроводов. По-прежнему актуально использование различных материалов на основе битума с применением дополнительных армирующих изделий, например стеклоткани или стеклохолста.

Более экономичными и прочными являются полимерно-битумные составы. Они позволяют вести быстрый монтаж а качество покрытия при этом получается долговечным и эффективным. Материал, называемый ППУ, надежен и прочен, что позволяет его применение, как для канального, так и бесканального способа прокладки магистралей. Используется также жидкий пенополиуретан, наносимой на поверхность по ходу монтажа, а также и другие материалы:

  • полиэтилен как многослойная оболочка, наносится в условиях промышленного производства для гидроизоляции;
  • стекловата различной толщины, эффективный утеплитель из-за своей невысокой стоимости при достаточной прочности;
  • для теплотрасс эффективно используются минеральные ваты расчетной толщины для утепления труб различных диаметров.

Монтаж изоляции

Расчет количества изоляции во многом зависит от способа ее нанесения. Это зависит от места применения – для внутреннего или наружного изолирующего слоя. Его можно выполнить самостоятельно или использовать программу – калькулятор для расчета теплоизоляции трубопроводов. Покрытие по наружной поверхности используется для водяных трубопроводов горячего водоснабжения при высокой температуре с целью ее защиты от коррозии. Расчет при таком способе сводится к определению площади наружной поверхности водопровода, для определения потребности на погонный метр трубы.

Для труб для водопроводных магистралей применяется внутренняя изоляция. Основное ее назначение – защита металла от коррозии. Ее используют в виде специальных лаков или цементно-песчаной композиции слоем толщиной несколько мм. Выбор материала зависит от способа прокладки – канальный или бесканальный. В первом случае на дне отрытой траншее размещаются бетонные лотки, для размещения. Полученные желоба закрываются бетонными же крышками, после чего канал заполняется ранее вынутым грунтом.

Бесканальная прокладка используется, когда рытье теплотрассы не представляется возможным. Для этого нужно специальное инженерное оборудование. Расчет объема тепловой изоляции трубопроводов в онлайн-калькуляторах является достаточно точным средством, позволяющим рассчитать количество материалов без возни со сложными формулами. Нормы расхода материалов приводятся в соответствующих СНиП.

Применение калькулятора для расчета теплоизоляции трубопроводов

Утепление труб изделиями из полиэтилена, находящихся за пределами зданий, особенно, внутри почвы – действие, которое необходимо осуществлять ещё на стадии прокладывания трубопровода. В противном случае, для решения проблем, сопутствующих промерзанию труб – деформации и разрыва, потребуется потратить гораздо больше времени и средств.

Теплоизоляция трубопровода из минеральной ваты

В данной статье будут рассмотрены методы расчета теплоизоляции трубопроводов с помощью онлайн калькуляторов, а также технология инженерного расчета утепления посредством формул. Также мы определим, какой утеплитель является оптимальным вариантом для теплоизоляции труб.

1 Методы расчета теплоизоляции для трубопроводов

Качественная теплоизоляция трубопроводов возможна только в том случае, когда утепление производится эффективным материалом, с максимально низкой теплопроводностью, правильно рассчитанным для условий конкретного случая.

Пренебрежение расчетом теплоизоляции с звукоизоляцией потолка своими руками, в итоге, выльется против самого же владельца трубопровода. Во-первых – неподходящий утеплитель (недостаточность толщины, высокая теплопроводность и тд), попросту не будет нормально выполнять требуемые задачи.

И наоборот, отсутствие расчета изоляции также чревато неоправданными финансовыми затратами, так как стоимость утеплителя напрямую зависит от его толщины, которая, в некоторых случаях, может быть попросту излишней.

Расчет изоляции необходим для определения объема и толщины, которой должен обладать утеплитель для трубопроводов.

При расчете толщины изоляции необходимо учитывать следующие факторы:

  • Температуру среды, циркулирующей в трубопроводе;
  • Допустимую величину механической нагрузки на конструкцию трубопровода;
  • Перепады температуры воздуха в окружающей трубопровод среде;
  • В случае, если трубопровод расположен в почве – нагрузку, которую он испытывает от грунта;
  • Теплоизоляционные характеристики утеплителя, который вы предпочитаете использовать;
  • Устойчивость теплоизоляции к деформации как у ветрозащитных мембран Изоспан.

Комплексная теплоизоляция труб из сшитого полиэтилена

Также необходимо учитывать требования Строительных Норм и Правил (СНиП), которые определяют особенности утеплителей, исходя из эксплуатационных условий и типа трубопровода.

Для любых трубопроводов с температурой рабочей среды до 12 градусов, с соответствиями с указаниями СНиП, необходимо использовать фольгированный теплоизоляционный материал.

Слой фольги, в таком случае, будет выступать в качестве пароизоляционного барьера, препятствующего образованию конденсата на поверхности трубопровода. А так не может даже теплоизоляция K-Flex для труб.

Ниже представлено два метода, каждый из которых в итоге даст правильный результат. Первый метод – использование онлайн-калькулятора, гораздо проще и быстрее.

Второй – классический расчет по инженерным формулам, более трудоемкий, однако дает возможность рассчитать те параметры теплоизоляции, которые не учитываются в онлайн-программах.
к меню ↑

Читайте также:  Как работает фреза по дереву – виды инструмента, фрезеровка паза, безопасность

1.1 Расчет посредством онлайн-калькулятора

Ранее, когда качественных компьютерных программ в этой сфере не существовало, для профессионального расчета толщины изоляции для трубопроводов было необходимо пользоваться оплачиваемыми услугами инженеров, однако сейчас ситуация изменилась.

К услугам частных пользователей, в интернете представлено большое количество разнообразных инженерных калькуляторов, который позволяют выполнить быстрый и качественный расчет параметров требуемого утепления.

Данный калькуляторы представлены в свободном доступе, они не требуют какой-либо оплаты, поскольку нет необходимости устанавливать калькулятор на компьютер. Вы просто заходите на сайт с программой, и используете её в своих целях.

Технология расчет посредством таких программ достаточно простая. Качественный калькулятор многофункционален – он дает возможность выполнить расчет изоляции сразу по нескольким итоговым целям.

  • Теплоизоляция трубопровода для получения требуемой температуры на поверхности труб (изоляция горячих труб от детей, и тд), и здесь лучше всего ставить отражающие теплоизоляционные материалы;
  • Теплоизоляция трубопровода для защиты циркулирующей в нём среды от промерзания в холодное время года;
  • Теплоизоляция трубопровода для защиты труб от влаги, конденсирующейся на поверхности утеплителя;
  • Теплоизоляция для двухтрубной тепловой магистрали при подземной прокладке.

После выбора требуемой задачи, калькулятор предлагает вам ввести исходные данные, необходимые для осуществления расчета:

  • Диаметр наружной поверхности трубы;
  • Температура рабочей среды трубопровода;
  • Длительность времени, за которое происходит замерзание циркулирующей в трубах жидкости, при отсутствии принудительной прокачки;
  • Материал, из которого изготовлены трубы (металл, медь, либо пластик);
  • Температура на поверхности трубопровода;
  • Коэффициент теплопроводности используемого утеплителя (как правило, калькулятор сам устанавливает этот показатель, и предлагает вам выбрать утеплитель из представленных материалов).

По итогам расчет вы узнаете, какой толщины утеплитель нужно использовать в вашем случае. Не рекомендуется брать утеплитель «с запасом» (теплоизоляция Изорок), поскольку излишняя толщина материала никакой роли играть не будет, а удорожание стоимости теплоизоляции произойдет существенное.

Теплоизоляция трубопровода утеплителем Термит

1.2 Самостоятельный инженерный расчет по формулам

В случае, если онлайн-калькулятор вам по каким-либо причинам не доступен, либо вы желаете проверить полученный результат, можно воспользоваться старым проверенным способом – расчетом теплоизоляции посредством инженерных формул.

Расчет толщины теплоизоляции для трубопроводов своими руками осуществляется в несколько этапов.

  1. В первую очередь вычисляется температурное сопротивление теплоизоляции, которая будет использоваться для утепления труб. Выполняется оно по следующей формуле.

  • Dиз – диаметр используемой теплоизоляции;
  • Dн — диаметр трубопровода;
  • Из – коэффициент теплопроводности утеплителя;
  • В – коэффициент теплообмена между воздухом и теплоизоляционным материалом.
  1. Далее, высчитывается линейная плотность теплового потока.

  • tн – температура на поверхности трубопровода;
  • tиз – температура на поверхности теплоизоляции.
  1. На третьем этапе выполняется расчет температуры на внутренней стенки теплоизоляции.

  • dв – внутренний диаметр трубопровода;
  • г – коэффициент теплообмена между стенкой трубопровода и циркулирующей средой;
  • т – коэффициент теплопроводности материала, использующегося для изготовления труб.
  1. Последней подводящей формулой является расчет теплового баланса.

В данную формулу подставляются все величины, уже использованные раннее.

  1. Последняя формула – расчет толщины теплоизоляции для трубопровода.

На этих же формулах базируется алгоритм действия любого онлайн-калькулятора по расчету толщины утеплителей.
к меню ↑

2 Оптимальные утеплители для трубопроводов

Классификация теплоизоляционных материалов для труб выполняется в зависимости от сферы их применения, исходя из чего выделяют:

  • Утеплителя для труб канализации, дренажных и сточных труб;
  • Утеплители для вентиляционных каналов, и труб систем кондиционирования;
  • Утеплители для подземных магистралей горячего и холодного водоснабжения;
  • Утеплители для элементов производственных линий.

В зависимости от формы материала выделяют следующие виды утеплителей:

  • Рулонные и плитные как пароизоляция Изоспан;
  • Напыляемые;
  • Утеплители в виде полых цилиндрических гильз.

К категории рулонной теплоизоляции относится минеральная вата и фольгированный пенофол.

Схема напыляемой ППУ теплоизоляции

Минвата является идеальным утеплителем для теплоизоляции трубопроводов с высокой температурой носителя, поскольку данный материал огнеупорен, и не деформируется даже под прямым воздействием огня.

Утепляются трубы минватой посредством наматывания, и последующего закрепления утеплителя скобами, либо проволокой.

Напыляемые утеплители – это пенополистирольная пена, и жидкий пеноизол. Данные материалы эффективны и долговечны, однако у них высокая стоимость, и для нанесения пенной теплоизоляции требуется специальное оборудование.

Утеплители в виде гильз, как правило, производятся из пенопласта и вспененного полиэтилена.

Они обладают низкой теплопроводностью и умеренной ценой, однако таким материалам свойственен общий недостаток – узкий температурный диапазон эксплуатации. Что ограничивает возможность их применения для утепления трубопроводов, транспортирующих горячую жидкость.
к меню ↑

2.1 Особенности теплоизоляции трубопроводов (видео)

Расчет толщины теплоизоляции трубопроводов

С целью обеспечения оптимальной транспортировки по трубопроводам различных сред цилиндрические конструкции принято изолировать. Нормативными документами установлены определенные требования к толщине теплоизоляции.

Процесс вычисления толщины теплоизоляционного слоя трубопроводов является сложным и трудоемким. Наиболее распространенной методикой является определение данного параметра по нормируемым показателям теплопотерь. Величины потерь установлены СНиПом и зависят от способов прокладки трубопроводов разного диаметра:

  • открыто на улице;
  • открыто в помещении;
  • бесканальным путем;
  • в непроходных каналах.

Суть расчета сводится к подбору такой толщины теплоизоляционного материала, чтобы значение фактических теплопотерь не превышало установленных в СНиПе показателей.

Вычисление толщины однослойной изоляции конструкции

Главная формула для расчета изоляции трубопровода представлена в следующем виде:

  • λ — коэффициент теплопроводности изоляции (справочный);
  • К — коэффициент дополнительных теплопотерь через крепления или опоры;
  • tT — температура транспортируемой среды (среднегодовая);
  • to — температура наружного воздуха (среднегодовая);
  • qL — величина теплового потока;
  • RH — сопротивление теплопередаче на наружной поверхности утеплителя (табличное значение).

Значение показателя В определяется отдельно:

  • δ — толщина изоляционной конструкции;
  • dиз — наружный диаметр трубопровода;
  • dтр — наружный диаметр изолируемой трубы.

Параметр ln находят по таблице логарифмов. В итоге толщина изоляции должна быть такой, при которой будет соблюдено условие тождественности левой и правой частей уравнения.

Вычисление толщины многослойной теплоизоляции

В случае перемещения по трубопроводу теплоносителя с высокой температурой (500-600 ℃) поверхность объекта изолируется двумя слоями из разных материалов. Один из слоев выступает в качестве ограждения горячей поверхности от второго, который, в свою очередь, служит для защиты трубопровода от низкой температуры воздуха снаружи. При этом важно, чтобы температура на границе слоев t1,2 была допустимой для материала наружного слоя изоляции.

Чтобы рассчитать толщину теплоизоляции первого слоя, используется уже знакомая нам формула:

Для определения толщины второго слоя вместо значения температуры поверхности трубопровода tT принимают температуру на границе двух изоляционных слоев t1,2.

Если диаметр трубопровода меньше 2 м, формула имеет следующий вид:

Довольно громоздкие расчеты толщины теплоизоляции трудно вести вручную. Поэтому с целью упрощения процесса и быстрого получения результата алгоритм рекомендуется внести в программу Microsoft Excel.

Расчет изоляции трубопроводов по заданной величине снижения температуры теплоносителя

В отдельных случаях требуется, чтобы теплоноситель был доставлен по трубопроводу в конечный пункт назначения с определенной температурой. Согласно этому условию и должен быть выполнен расчет толщины теплоизоляции.

Читайте также:  Как полировать оргстекло самостоятельно

Сначала находится полное тепловое сопротивление изоляции RП :

  • К — коэффициент дополнительных теплопотерь через крепления или опоры;
  • tт.нач — начальная температура теплоносителя;
  • tо — температура окружающей среды;
  • tт.нач — конечная температура теплоносителя;
  • l — длина трубопровода;
  • G — расход теплоносителя;
  • C — удельная теплоемкость транспортируемой среды.

Далее значение толщины теплоизоляции рассчитывается по знакомой формуле:

Расчет изоляции трубопроводов по заданной температуре поверхности утепляющего слоя

На многих промышленных предприятиях трубопроводы проложены внутри рабочих помещений, в которых находятся люди. В этой связи правила охраны труда диктуют повышенные требования к температуре труб. Вычисление толщины теплоизоляционного слоя для труб диаметром более 2 м по заданной температуре поверхности утеплителя выполняется по формуле:

  • α — коэффициент теплоотдачи (справочный);
  • tП — нормируемая температура поверхности утеплителя;
  • остальные параметры — из предыдущих формул.

Несмотря на то, что данная методика имеют незначительную погрешность, она применяется в настоящее время для вычисления показателей изолирующего слоя. Для получения более точных расчетов лучше воспользоваться специализированным программным обеспечением.

Расчет теплоизоляции трубопроводов с помощью программы ИЗОЛЯЦИЯ от НТП Трубопровод

Расчет тепловой изоляции – трудоемкая задача, возникающая в процессе проектирования теплоизоляции трубопроводов. В настоящее время к данному расчету теплоизоляции трубопроводов предъявляются повышенные требования относительно скорости его реализации. По этой причине расчет теплоизоляции трубопроводов для крупных проектов выполнять вручную не только нецелесообразно, но и практически невозможно. Следует отметить, что требуемую эффективность ручного расчета тепловой изоляции нельзя достичь даже при условии применения специальных альбомов, в которых собраны стандартные конструкции.

Чтобы разобраться с этой непростой задачей, в данной статье мы детально рассмотрим расчет теплоизоляции трубопроводов с помощью программы ИЗОЛЯЦИЯ .

Как выполняется расчет тепловой изоляции и что нужно при этом учитывать?

Выбрать оптимальный вариант утеплителя можно только после того, как будет определена наиболее подходящая для каждого случая толщина материала и его плотность. Рассчитывая эти параметры, можно существенно снизить теплопотери и температуру трубопровода, что обеспечит безопасную эксплуатацию.

Основные аспекты, которые играют важную роль при расчете тепловой изоляции:

  • температура участка поверхности, нуждающегося в утеплении;
  • перепады температуры окружающей среды;
  • механическое воздействие на объект типа вибраций;
  • нагрузки, которые испытывают трубы в процессе эксплуатации от транспортных средств и грунта;
  • коэффициент теплопроводности теплоизоляционного материала;
  • стойкость утеплителя к механической деформации.

С характеристиками, которыми должны быть наделены теплоизоляционные материалы в зависимости от типа трубопровода и эксплуатационных условий, можно ознакомиться в СНиП 41-03-2003. Согласно этим нормам, утепление труб, температура которых не превышает 12ºC, должно предусматривать специальный пароизоляционный слой.

Толщину теплоизоляционного слоя можно определить, выполнив технико-экономический расчет. Для этого нужно использовать определенные формулы. Итак, в процессе инженерного расчета теплоизоляции трубопроводов следует учитывать сопротивление утеплителя температурам:

* для труб диаметром ≥25 мм – минимум 0,86ºC м²/Вт;

* для труб диаметром

Программа ИЗОЛЯЦИЯ: основные положения

Сомневаясь в собственных силах насчет правильного использования представленных формул, лучше воспользоваться при расчетах теплоизоляции трубопроводов программой ИЗОЛЯЦИЯ от НТП Трубопровод.

Программа ИЗОЛЯЦИЯ – уникальное средство для оперативного выполнения расчетов теплоизоляции трубопроводов, без которых не обойтись при выборе теплоизоляционного материла. С помощью программы ИЗОЛЯЦИЯ данная задача выполняется за период, составляющий 10% от времени, затрачиваемого на самостоятельный расчет. Программа ИЗОЛЯЦИЯ автоматически формирует конструкцию утеплителя и рассчитывает необходимые данные. Помимо этого, она оформляет ведомости, одна из которых включает ссылочную и прилагаемую документацию, вторая – технические сведения о конструкции и монтаже, третья – объемы работ, а также спецификацию согласно госстандартам (ГОСТ 21.405-93, ГОСТ 21.110-95, ГОСТ 21.101-97).

Но если вы все же делаете выбор в пользу самостоятельного выполнения работ по расчету тепловой изоляции, нельзя забывать о том, что толщина теплоизоляционного слоя рассчитывается, исходя из конкретных условий (например, тип утеплителя, сезонные перепады температур, влажность воздуха). Особенно внимательным следует быть с влажностью окружающей среды, поскольку она способна ускорить процессы теплообмена и, следовательно, снизить эффективность утеплителя.

Оставить комментарий к этой статье или задать вопрос автору можно на наших страницах в соцсетях Вконтакте или Facebook

Программа расчета K-PROJECT

Расчетная программа K-PROJECT предназначена для проектирования инженерных систем различного назначения с использованием в конструкции технической изоляции «K-FLEX», покрывных защитных материалов и комплектующих, основываясь на требованиях, содержащихся в нормах технологического проектирования и других нормативных докуметах:

  • СП 41-103-2000 «Проектирование тепловой изоляции оборудования и трубопроводов»;
  • ГЭСН-2001 Сборник №26 «Теплоизоляционные работы»;
  • СП 131.13330.2012 «Строительная климатология». Актуализированная редакция СНиП 23-01-99;
  • СП 61.13330.2012 «Тепловая изоляция оборудования и трубопроводов». Актуализированная редакция СНиП 41-01-2003;
  • ТР 12324 — ТИ.2008 «Изделия теплоизоляционные из каучука «K-FLEX» в конструкциях тепловой изоляции оборудования и трубопроводов.

Программа выполняет следующие типы расчетов:

1. Для трубопроводов:

  • Расчет теплового потока при заданной толщине изоляции;
  • Расчет изменение температуры теплоносителя при заданной толщине изоляции;
  • Расчет температуры на поверхности изоляции при заданной толщине изоляции;
  • Расчет времени замерзания теплоносителя при заданной толщине изоляции;
  • Расчет толщины изоляции с целью предотвращения образования конденсата на поверхности изоляции.

2. Для плоских поверхностей:

  • Расчет теплового потока при заданной толщине изоляции;
  • Расчет температуры на поверхности изоляции при заданной толщине изоляции;
  • Расчет толщины изоляции с целью предотвращения образования конденсата на поверхности изоляции и другие.

Результаты расчетной программы K-PROJECT могут быть использованы при проектировании конструкций тепловой изоляции оборудования и трубопроводов промышленных предприятий, а также объектов ЖКХ, включая:

  • технологические трубопроводы с положительными и отрицательными температурами всех отраслей промышленности;
  • трубопроводы тепловых сетей при надземной (на открытом воздухе, подвалах, помещениях) и подземной (в каналах, тоннелях) прокладках;
  • трубопроводы систем отопления, горячего и холодного водоснабжения в жилищном и гражданском строительстве, а также на промышленных предприятиях;
  • низкотемпературные трубопроводы и оборудование холодильных установок;
  • воздуховоды и оборудование систем вентиляции и кондиционирования воздуха;
  • газопроводы; нефтепроводы, трубопроводы с нефтепродуктами;
  • технологические аппараты предприятий химической, нефтеперерабатывающей, газовой, пищевой, и др. отраслей промышленности резервуары для хранения холодной воды в системах водоснабжения и пожаротушения;
  • резервуары для хранения нефти и нефтепродуктов, мазута, химических веществ и т.д.

В программе реализован модуль расчета коэффициента теплоотдачи в зависимости от температур теплоносителя и окружающей среды, типа покровного слоя и ориентации трубопровода, позволяющий учитывать эти факторы при расчете теплотехнических характеристик.

В обновленной версии программы K-PROJECT 2.0 реализована возможность составлять рабочую документацию согласно ГОСТ 21.405-93 «СПДС. Правила выполнения рабочей документации тепловой изоляции оборудования и трубопроводов»:

  • техномонтажная ведомость;
  • спецификация оборудования.

При формировании техномонтажной ведомости и спецификации, программа подбирает требуемые типоразмеры теплоизоляционных материалов K-FLEX, рассчитывает необходимое количество покровных материалов и аксессуаров K-FLEX для планируемого монтажа.

Ссылка на основную публикацию